一、题目
Convergence of square tilings to the Riemann map
二、主讲人
Agelos Georgakopoulos
三、摘要
A well-known theorem of Rodin & Sullivan, previously conjectured by Thurston, states that the circle packing of the intersection of a lattice with a simply connected planar domain Ω into the unit disc D converges to a Riemann map from Ω to D when the mesh size converges to 0. An analogous statement holds when circle packings are replaced by the square tilings of Brooks et al. The latter provides an algorithm for the approximation of the Riemann map from an arbitrary domain. The theory of random walks and electrical networks comes into play.
Joint work with Christoforos Panagiotis (Geneva)
四、主讲人简介
Agelos Georgakopoulos,华威大学助理教授,主要研究方向为无限图、图上的随机游走、随机过程等,在Inventiones Mathematicae, Advances in Mathematics, Journal of the London Mathematical Society, Journal of Combinatorial Theory. Series B, Combinatorica等顶尖杂志发表论文40余篇。
五、联系人
王光辉 韩杰
六、时间
1月21日(周四)18:30
七、地点
Zoom会议 ID:821 2208 7839
密码:210121
八、主办方
山东大学数学学院