一、题目
A new Lagrange multiplier approach for constructing positivity/bound preserving schemes
二、主讲人
Jie Shen
三、摘要
Solutions for a large class of partial differential equations (PDEs) arising from sciences and engineering applications are required to be positive to be positive or within a specified bound. It is of critical importance that their numerical approximations preserve the positivity/bound at the discrete level, as violation of the positivity/bound preserving may render the discrete problems ill posed. I will review the existing approaches for constructing positivity/bound preserving schemes, and then present a new Lagrange multiplier approach for constructing a class of positivity/bound preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity/bound using the Karush-Kuhn-Tucker (KKT) conditions. We then use a predictor-corrector approach to construct a class of positivity/bound preserving schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity/bound preserving, can be implemented with negligible cost. We shall present some stability/error analysis for our schemes under a general setting, and present ample numerical results to validate the new approach.
四、主讲人简介
沈捷,美国普渡大学数学系教授、国际著名数值计算和分析专家。1982年毕业于北京大学计算数学专业,随后赴法国巴黎十一大学研究数值分析,师从国际著名数学大师ROGER TEMAN。沈捷教授长期从事偏微分方程数值解研究,尤其在谱方法和投影法上有很多杰出的工作,目前已在SIAM Review, SIAM J. Numer. Anal.,SIAM J. Sci. Comput.,Numer. Math., Math. Comp.等国际著名期刊上发表学术论文200余篇,其研究结果被国际同行广泛引用。2008年沈捷教授因在微分方程研究中的卓越贡献获得富布赖特奖,国家级高层次特聘专家。2017年当选美国数学会Fellow, 2020年当选国际工业与应用数学协会(SIAM)Fellow。
五、邀请人
芮洪兴 数学学院教授
六、时间
10月23日(周六)9:00
七、地点
中心校区知新楼B座924报告厅
八、主办方
山东大学数学学院