一、题目
Lagrangian approach to global well-posedness of the viscous surface wave equations
二、主讲人
桂贵龙
三、摘要
In this talk, we revisit the global well-posedness of the classical viscous surface waves in the absence of surface tension effect with the reference domain being the horizontal infinite slab, for which the first complete proof was given in Guo-Tice (2013, Analysis and PDE) via a hybrid of Eulerian and Lagrangian schemes. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes equations. Even though Lagrangian formulation is most natural to study free boundary value problems for incompressible flows, few mathematical works for global existence are based on such an approach in the absence of surface tension effect, due to breakdown of Beale's transformation. We develop a mathematical approach to establish global well-posedness based on the Lagrangian framework by analyzing suitable "good unknowns" associated with the problem, which requires no nonlinear compatibility conditions on the initial data.
四、主讲人简介
桂贵龙,男,江西鹰潭人,中共党员,1976年1月出生,2001年4月入党,西北大学数学学院教授,博士生导师。2010年7月在中国科学院数学与系统科学研究院数学研究所获理学博士学位;2011年8月-2012年8月在香港中文大学数学科学研究所从事博士后研究工作,2011年荣获第十届钟家庆数学奖。主要研究流体力学方程组的数学理论,在本领域国际数学杂志Comm. Pure Appl. Math., Adv. Math., Comm. Math. Phys.等发表SCI论文多篇。现任西北大学数学学院科研副院长。
五、邀请人
郑云瑞
六、时间
11月3日(周三)10:00-11:00
七、地点
腾讯会议,会议ID:542 587 955
八、主办方
山东大学数学学院