山东大学新闻网
山大邮箱 | 投稿系统 | 高级检索 | 旧版回顾
复杂检索

视点首页 > 学术预告 > 正文

Random surface, planar lattice model, and conformal field theory

发布日期:2022年12月19日 08:09 点击次数:

时间 12月20日(星期二)10:30-12:30 地点 腾讯会议
本站讯 讲座时间 2022-12-20 10:30:00

一、报告题目

Random surface, planar lattice model, and conformal field theory

二、主讲人

孙 鑫

三、报告时间

2022年12月20日 10:30-12:30

四、报告地点

腾讯会议

五、摘要

Liouville quantum gravity (LQG) is a theory of random surfaces that originated from string theory. Schramm Loewner evolution (SLE) is a family of random planar curves describing scaling limits of many 2D lattice models at their criticality. Before the rigorous study via LQG and SLE in probability, random surfaces and scaling limits of lattice models have been studied via another approach in theoretical physics called conformal field theory (CFT) since the 1980s. In this talk, I will demonstrate how a combination of ideas from LQG/SLE and CFT can be used to rigorously prove several long standing predictions in physics on random surfaces and planar lattice models, including the law of the random modulus of the scaling limit of uniform triangulation of the annular topology, and the crossing formula for critical planar percolation on an annulus. I will then present some conjectures which further illustrate the deep and rich interaction between LQG/SLE and CFT. Based on joint works with Ang, Holden, Remy, Xu, and Zhuang.

六、主讲人简介

I am an Assistant Professor in Mathematics at the University of Pennsylvania, with a secondary appointment in Statistics and Data Science. Before joining Penn, I was a Junior Fellow at Simons Society of Fellows, working at Columbia University. I got my Ph.D. degree from MIT and B.S. degree from Peking University. My research is supported by NSF CAREER Award DMS-2046514. In 2022-2023 I am a member at IAS, Princeton.

七、主办单位

非线性期望前沿科学中心

数学与交叉科学研究中心


【作者:杨媛    来自:数学与交叉科学研究中心    编辑:新闻网工作室    责任编辑:蒋晓涵  】

 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1拖动光标可翻页查看更多评论

免责声明

您是本站的第: 位访客

新闻中心电话:0531-88362831 0531-88369009 联系信箱:xwzx@sdu.edu.cn

建议使用IE8.0以上浏览器和1366*768分辨率浏览本站以取得最佳浏览效果

欢迎关注山大视点微信