一、报告题目
Real-Variable Theory of Function Spaces Associated with Ball Banach Function Spaces
二、主讲人
杨大春
三、报告时间
2023年2月22日 15:00-16:30
四、报告地点
腾讯会议:386-540-692
五、摘要
The concept of ball Quasi-Banach function (BQBF) spaces was introduced in 2017 by Y. Sawano, K.-P. Ho, D. Yang and S. Yang. It is well known that some well-known function spaces, such as Morrey spaces, weighted Lebesgue spaces, mixed-norm Lebesgue spaces, and Orlicz-slice spaces, are ball Quasi-Banach function spaces, but not Quasi-Banach function spaces. In this talk, we will introduce some recent developments of the real variable theory of function spaces associated with ball Banach function spaces, including the boundedness and the compactness of commutators on ball Banach function spaces, (weak) Hardy spaces associated with ball Banach function spaces, and Sobolev spaces associated with ball Banach function spaces. In particular, we will introduce some methods on how to overcome the difficulties caused by the deficiency of the explicit expression of the quasi-norm of BQBF spaces.
六、主讲人简介
杨大春,北京师范大学二级教授,国务院政府特殊津贴获得者,中共中央统战部联系的党外专家,第八届教育部科学技术委员会数理学部委员。杨大春教授已培养博士20余名,其中多人获得国家优秀青年基金、教育部“新世纪优秀人才支持计划”等人才计划支持。曾担任过国家自然科学基金委数理科学部第十三、十四届专家评审组成员。获在日本举办的“国际分析、计算及其应用协会”第二届大会“数学杰出研究成就奖”。主要从事调和分析及其应用领域的研究,在函数空间、算子理论、度量空间上的分析等多个领域作出重要贡献,在Adv. Math., J. Math. Pure. Appl., Tran. Amer. Math. Soc., Math. Ann., J. Funct. Anal., Cal. Var. PDEs等国际权威期刊上发表论文400余篇并在科学出版社(1本)及世界著名的Springer-Verlag出版社出版专著4部。担任国际SCI数学期刊J. Four. Anal. Appl., Math. Nach., Banach J. Math. Anal., Anal. Geom. Met. Spaces和国内SCI期刊Sci. China Math., Acta Math. Sin. (Eng. Ser.)等编委。
七、主办单位
非线性期望前沿科学中心
数学与交叉科学研究中心