一、题目:
Analysis of steady flows with stagnation points for the incompressible Euler system in an infinitely long nozzle
二、主讲人:
谢春景
三、摘要:
Stagnation point in flows is an interesting phenomenon in fluid mechanics. It induces many challenging problems in analysis. We first derive a Liouville type theorem for Poiseuille flows in the class of incompressible steady inviscid flows in an infinitely long strip, where the flows can have stagnation points. With the aid of this Liouville type theorem, we show the uniqueness of solutions with positive horizontal velocity for steady Euler system in a general nozzle when the flows tend to the horizontal velocity of Poiseuille flows at the upstream. Finally, this kind of flows are proved to exist in a large class of nozzles and we also prove the optimal regularity of boundary for the set of stagnation points. This talk is based on joint work with Congming Li, Yingshu Lv, and Henrik Shahgholian.
四、主讲人简介:
谢春景,上海交通大学数学科学学院教授、博士生导师、国家特聘青年专家。谢春景教授主要从事流体力学中的偏微分方程的理论研究,在相关课题上取得了重要研究成果,目前已在Comm. Math. Phys.、Arch. Ration. Mech. Anal.、Adv. Math.、J. Math. Pures Appl.、Indiana Univ. Math. J.等国际重要学术期刊上发表论文多篇。
五、邀请人:
陶涛 数学学院副教授
六、时间:
4月21日(周五)10:30-11:30
七、地点:
腾讯会议
八、联系人:
陶涛,联系方式:taotao@sdu.edu.cn
九、主办:
山东大学数学学院