一、报告题目
Dyck paths, Hessenberg varieties, and Shareshian--Wachs conjecture
二、主讲人
桂弢(北京大学)
三、报告时间
2024年5月16日 09:30–10:30
四、报告地点
华岗苑东楼E119
五、摘要
Hessenberg varieties are subvarieties of the full flag varieties which are defined by a Dyck path (corresponds to a “Hessenberg function”) and a linear transformation. Tymoczko constructed the so called “dot action” of symmetric groups on the cohomology of Hessenberg varieties using the GKM theory, whose Frobenius images are proven to be exactly (the dual) of the corresponding Shareshian--Wachs’s chromatic quasi-symmetric functions by Brosnan--Chow and Guay-Paquet independently. The Stanley--Stembridge conjecture and the stronger (i. e., q-version) Shareshian--Wachs conjecture are reduced to finding a good basis of the cohomology. We will explain the basic language necessary to understand these intricate geometry pictures.
六、主讲人简介
桂弢,2023年博士毕业于中国科学院数学与系统科学研究院,现为北京大学国际数学研究中心博士后,主要研究方向为表示论与组合霍奇理论。
七、主办单位
非线性期望前沿科学中心
数学与交叉科学研究中心
中俄数学中心青岛基地