山东大学新闻网
山大邮箱 | 投稿系统 | 高级检索 | 旧版回顾
复杂检索

视点首页 > 学术预告 > 正文

数学学院珠峰论坛第422期:Regularized maximum likelihood in the beta model for large and sparse networks

发布日期:2021年11月12日 13:56 点击次数:

时间 11月17日(星期三)10:00—11:00 地点 腾讯会议(ID:918 888 408)
本站讯 讲座时间 2021-11-17 10:00:00

一、题目

Regularized maximum likelihood in the beta model for large and sparse networks

二、主讲人

晏挺

三、摘要

The beta model is a powerful tool for modeling network generation driven by node degree heterogeneity. It is simple yet expressive nature particularly well-suits large and sparse networks, where even moderately complex models might be infeasible to fit due to very few nonzero observations and computational challenge. However, simple as this model is, our theoretical understanding remains rather limited. Also, available computation method for fitting this model remains unscalable. In a big-data era, substantial improvements are urgently needed for the beta model. Our paper brings several major refinements and improvements to the methodology and theory of the beta model: 1. we propose a new L2 penalized MLE scheme; we design a novel algorithm that can comfortably handle sparse networks of millions of nodes, sharply contrasting the best existing tools that could only deal with thousands of nodes; 2. we present much stronger error bounds on beta-models under much weaker assumptions than existing literature; we also prove the first resolution-limit bound and new normality results; 3. we apply our method to analyze a huge COVID-19 knowledge graph and discover very meaningful results.

四、主讲人介绍

晏挺,现任华中师范大学数学与统计学学院教授,博士生导师,讲授了多门主干课程,主持了4项国家自然科学基金项目。曾在乔治华盛顿大学从事博士后研究,于2013年进入华中师范大学工作,入选了湖北省楚天学者计划。目前的主要研究方向为网络模型,成对比较以及应用统计。在Annals of Statistics,Journal of the American Statistical Association, Biometrika等统计学期刊上发表论文三十余篇。

五、邀请人

林路

六、时间

11月17日(周三)10:00-11:00

七、地点

腾讯会议ID: 918 888 408

八、主办方

山东大学数学学院


【作者:张志越    来自:数学学院    编辑:新闻网工作室    责任编辑:高子芸 蒋晓涵  】

 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1拖动光标可翻页查看更多评论

最新发布

新闻排行

免责声明

您是本站的第: 位访客

新闻中心电话:0531-88362831 0531-88369009 联系信箱:xwzx@sdu.edu.cn

建议使用IE8.0以上浏览器和1366*768分辨率浏览本站以取得最佳浏览效果

欢迎关注山大视点微信